MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation
نویسندگان
چکیده
In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2.
منابع مشابه
miR-145a-5p Promotes Myoblast Differentiation
MicroRNAs are a class of 18-22-nucleotide noncoding RNAs that posttranscriptionally regulate gene expression and have been shown to play an important role during myoblast differentiation. In this study, we found that the expression of miR-145a-5p was gradually increased during C2C12 myoblast differentiation, and miR-145a-5p inhibitors or mimics significantly suppressed or promoted the relative ...
متن کاملOver-expression of miR-125a-5p inhibits proliferation in C2C12 myoblasts by targeting E2F3.
MicroRNAs (miRNAs) are a class of small non-coding RNAs of 20-25 nucleotides in length. It has been shown that miRNAs play important roles in the proliferation of many types of cells, including myoblasts. In this study, we used real-time quantitative polymerase chain reaction, western blotting, EdU, flow cytometry, and CCK-8 assay to explore the role of miR-125a-5p during the proliferation of C...
متن کاملThe NF-κB-modulated microRNAs miR-195 and miR-497 inhibit myoblast proliferation by targeting Igf1r, Insr and cyclin genes.
MicroRNAs (miRNAs) play important roles in the development of skeletal muscle. In our previous study, expression of miR-195 and miR-497 were shown to be upregulated during muscle development in pigs. In this study, we investigated the roles of these two miRNAs in myogenesis and analyzed their transcriptional regulation. Our results showed that miR-195 and miR-497 were upregulated during muscle ...
متن کاملMiRNA-199a-3p Regulates C2C12 Myoblast Differentiation through IGF-1/AKT/mTOR Signal Pathway
MicroRNAs constitute a class of ~22-nucleotide non-coding RNAs. They modulate gene expression by associating with the 3' untranslated regions (3' UTRs) of messenger RNAs (mRNAs). Although multiple miRNAs are known to be regulated during myoblast differentiation, their individual roles in muscle development are still not fully understood. In this study, we showed that miR-199a-3p was highly expr...
متن کاملMicroRNA-27b Regulates Mitochondria Biogenesis in Myocytes
MicroRNAs (miRNAs) are small, non-coding RNAs that affect the post-transcriptional regulation of various biological pathways. To date, it is not fully understood how miRNAs regulate mitochondrial biogenesis. This study aimed at the identification of the role of miRNA-27b in mitochondria biogenesis. The mitochondria content in C2C12 cells was significantly increased during myogenic differentiati...
متن کامل